Łoś–Tarski preservation theorem - definição. O que é Łoś–Tarski preservation theorem. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Łoś–Tarski preservation theorem - definição


Łoś–Tarski preservation theorem         
The Łoś–Tarski theorem is a theorem in model theory, a branch of mathematics, that states that the set of formulas preserved under taking substructures is exactly the set of universal formulas. The theorem was discovered by Jerzy Łoś and Alfred Tarski.
Tarski–Seidenberg theorem         
MATHEMATICAL LOGIC
Tarski-Seidenberg theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (n + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto n-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg.
Banach-Tarski paradox         
IDEA OF TAKING APART AN OBJECT AND CONSTRUCTING TWO IDENTICAL COPIES OF IT
Banach Tarski Paradoxical Decomposition; Banach-Hausdorff-Tarski Paradox; Banach-Hausdorff-Tarski paradox; Hausdorff–Banach–Tarski paradox; Hausdorff-Banach-Tarski paradox; Banach-Tarski; Banach-Tarski paradox; Banach-Tarksi theorem; The Banach-Tarski Paradox; Tarski-Banach paradox; Tarski-Banach Theorem; Banach-Tarski Theorem; Banach-Tarski theorem; Banach–Tarski theorem; Banach–Tarski Theorem; Banach Tarski paradox; Tarski Banach paradox; Tarski Banach theorem; Banach-Tarski Paradox; Banach-Tarksi paradox; Banach Tarski; Banach Tarski Paradox; Hausdorf-Banach-Tarski Paradox; Banach-Tarski sphere dissection; Pea and the Sun; Pea and the Sun paradox; Banach–Tarski; Banach-Tarsky; Banach-Tarsky paradox
<mathematics> It is possible to cut a solid ball into finitely many pieces (actually about half a dozen), and then put the pieces together again to get two solid balls, each the same size as the original. This paradox is a consequence of the Axiom of Choice. (1995-03-29)